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Abstract

We study the conjugate condensation-heat conduction process of a saturated vapor in contact with a vertical ®n,

including both longitudinal and transversal heat conduction e�ects. The momentum and energy balance equations
are reduced to a nonlinear system of partial di�erential equations with four parameters: the Prandtl number, Prc,
Jakob number, Ja, a nondimensional ®n thermal conductivity a and the aspect ratio of the plate e: Using the small

Jakob limit and the boundary layer approximation, the total mass ¯ow rate of condensed ¯uid has been obtained
for all possible values of the involved parametric space. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The heat transfer analysis of ®lm condensation is an
important area in the design of heat exchangers. Here,
we are interested in studying the laminar ®lm conden-
sation over ®ns, where fundamental and practical

physical aspects of the problem have a clear in¯uence
on the design and control of ®n performance. Since
the pioneering paper of Nusselt [1], simpli®cations and

idealizations have been re-examined during the past
decades in order to improve the simple Nusselt's the-
ory. One of these situations that serve to de®ne more

realistic models and to select properly the heat-transfer
characteristics, appears when the conjugate heat trans-
fer problem is taken into account. From this point of
view, we accept that the conjugate problem is

described by the thermal interaction between the ®n
and the adjacent laminar boundary layer ®lm of the
condensate. It is then necessary to consider non-iso-

thermal conditions in the ®n in order to have an ad-

equate description of the involved phenomena. Well-

recognized works mostly deal with ®lm condensation

over isothermal walls. Sparrow and Gregg [2], among

others, solved numerically a set of partial di�erential

governing equations for the gravity driven laminar ®lm

condensation on a vertical ¯at plate. They employed

boundary layer theory and similarity methods for a

plate at uniform temperature. They showed that the in-

¯uence of the inertial terms are not important, if the

Prandtl number is larger than 10, and were quite small

even for a Prandtl number of order unity. The import-

ance of such results has been well known and docu-

mented in Ref. [3], extended by Koh et al. [4], Koh [5]

and Chen [6]. In general, the state-of-the-art with iso-

thermal surfaces can be found in Ref. [7] and more

recently, in [8].

Although the foregoing works are essential contri-

butions to the study of laminar ®lm condensation,

they were only reserved for those situations where

the temperature at the surface of the plate has been

maintained uniformly. We notice here that this situ-
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ation is only valid for very idealized cases. This

was recognized by Patankar and Sparrow [9] in

their numerical study of laminar ®lm condensation

on a vertical ®n attached to a cooled vertical plate

or cylinder. In this work, the condensation process

is coupled with the heat conduction within the ®n.

They used a similarity analysis and concluded that

the calculated ®n heat transfer is lower than the

predicted value obtained by using an isothermal ®n

model. Wilkins [10] has shown that an explicit ana-

lytical solution is possible for the formulation of

Patankar and Sparrow. These contributions reveal

that the studies of condensation on extended sur-

faces form a class by themselves and, for these pro-

blems, an estimation of surface area requirements

for a condenser using the classical Nusselt analysis

is not appropriate. Sarma and Chary [11] studied

the condensation process on a vertical ®n of vari-

able thickness. By matching the governing equations

of the vertical ®n and the condensed phase, through

appropriate wall condition, they have analyzed the

e�ect of ®n geometry on condensation heat transfer

and, they found that the in¯uence of this thermal

interaction is of primordial importance. For practi-

cally, the same problem with uniform thickness of

the ®n, Chen et al. [12] solved the coupled inter-

action in the presence of the shear stress at the

liquid±vapor interface, pointing out the in¯uence of

the dimensionless Prandtl number, Pr, Jacob num-

ber, Ja on the Nusselt number, Nu. Experimental

results on ®lm condensation have been correlated by

Chen et al. [13]. Recently, MeÂ ndez and TrevinÄ o [14]

solved the problem (using perturbation and numeri-

cal techniques) of laminar ®lm condensation on a

surface of a thin vertical plate caused by a forced

cooling ¯uid. They showed that the e�ect of heat

conduction through the plate modi®es substantially

the classical Nusselt solution. Similar results were

reported in later works [15,16]. Film condensation

transient e�ects were also considered by Flik and

Tien [17], among others, where the transient ®lm

thickness is predicted using a simple method to

study the propagation of the resulting traveling

wave.

In order to obtain new solutions where non-isother-

mal conditions are present, in this paper we analyze

Nomenclature

cc speci®c heat of the condensed ¯uid
fc nondimensional stream function introduced in

Eq. (19)

g acceleration due to gravity
h half-thickness of the ®n
hfg latent heat of condensation

Ja Jacob number de®ned in Eq. (2)
L length of the ®n
m ' mass ¯ow rate of condensed ¯uid

Prc Prandtl number of the condensed ¯uid
T temperature
T0 temperature at the base of the ®n
Ts temperature of the saturated vapor
�u, �v longitudinal and transversal velocities in physi-

cal units
u, v nondimensional longitudinal and transversal

velocities
uc characteristic longitudinal velocity of the con-

densed ¯uid

x, y Cartesian coordinates
z nondimensional transversal coordinate of the

plate de®ned in Eq. (14)

Greek symbols
a heat conduction parameter de®ned in Eq. (10)
b nondimensional parameter b � e2=a8=7

D normalized thickness of the condensed layer

dc thickness of the condensed layer
Z ®n e�ciency de®ned in Eq. (56)
e aspect ratio of the plate de®ned in Eq. (10)

Zc nondimensional transversal coordinate for the
condensed ¯uid ¯ow

f nondimensional function introduced in Eq.

(39)
lc thermal conductivity of the condensed phase
lw thermal conductivity of the ®n

mc dynamic viscosity of the condensed ¯uid
nc kinematic coe�cient of viscosity of the con-

densed ¯uid
rc condensed ¯uid density

yw nondimensional temperature of the ®n
yc nondimensional temperature of the condensed

layer

x nondimensional inner coordinate de®ned in
Eq. (45)

w nondimensional longitudinal coordinate

de®ned in Eq. (14)
z nondimensional inner coordinate de®ned in

Eq. (39)

Subscripts
c refers to the condensed ¯uid
f conditions at the base of the ®n

w conditions at the ®n
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the conjugate laminar ®lm condensation on the exter-
nal sides of a vertical ®n. Here we consider the case

for which the base of the ®n is maintained at a uni-
form temperature. The heat ¯ux from the condensed
phase to the ®n is strongly in¯uenced by the presence

of the extended surface with ®nite thermal conductivity
because longitudinal and transverse heat conduction
e�ects become signi®cant. The coupling between the

vertical ®n and the condensed phase o�ers new theor-
etical perspective to the earlier fundamental works on
laminar ®lm condensation. In this work, we use pertur-

bation methods and the boundary layer description for
the condensed ¯uid ¯ow to show that the longitudinal
and transverse heat conduction through the plate
depend on four nondimensional parameters: the

Prandtl number, Prc, Jakob number, Ja, a and e: Par-
ameter a represents the ratio of the conductance
(inverse of resistance) of longitudinal heat conduction

in the ®n to conductance for transverse heat convec-
tion through the condensate and e is the aspect ratio
of the ®n. We develop an analysis for all values of a
and in some cases, we compare the analytical solutions
with the results obtained using numerical techniques.

2. Formulation and order of magnitude analysis

The physical model under study is shown in Fig. 1.
A thin vertical ®n, with length L and thickness 2h with

2h� L, is immersed in a stagnant atmosphere ®lled
with saturated vapor with a temperature Ts. The ®n's
base is maintained at a temperature T0 < Ts, thus gen-

erating a heat ¯ux from the saturated vapor and creat-
ing thin condensed ®lms on both sides of the ®n. We
neglect the condensation e�ects over the top of the ®n,

due to the involved geometry scales. Also, for sim-
plicity we consider that the top of the ®n is adiabatic.

The inclusion of a ®nite thermal conductivity of the ®n
material, enables heat conduction in both longitudinal

and transversal coordinates (x and y, respectively)
through the extended surface. The condensate layers
develop and drain with increasing thicknesses down-

stream. Due to the symmetry of the physical model,
we only consider, for convenience, the right-hand side
of this con®guration. Therefore, we select the upper

right corner of the ®n as the origin of the coordinate
system, whose y axis points in the direction normal to
the vertical ®n and its x axis points down in the longi-

tudinal direction of the ®n, that is, in the direction of
the gravity vector. An order of magnitude estimate
(see, for example, Ref. [18]) is useful to obtain the im-
portant nondimensional parameters and the relevant

working regimes.
From the momentum equation for condensate ¯ow

in the longitudinal direction x, it can be shown that

the condensed ¯uid's longitudinal velocity is of the
order, uc0�g=nc�d2c�x�, where dc�x� is the condensed
layer thickness, g is the gravity acceleration and nc is

the kinematic coe�cient of viscosity. The condensate
mass ¯ow and the condensation rates are of the order

m 00rcg

nc

d3c�x�,
dm 0

dx
0 lcDTc

dc�x�hfg

,

respectively. The last relationship was obtained from
the thermal energy balance at the condensate±vapor
interface. Here, hfg corresponds to the latent heat of

condensation, lc represents the thermal conductivity of
the condensed phase and DTc is the characteristic tem-
perature di�erence across the condensed liquid. There-
fore, we show that a representative global thickness of

the condensate layer related to the length of the ®n is
of order

dcf

L
0
�
Ja

g
DTc

DT

�1=4

, with g � gL3

n2c
: �1�

Ja corresponds to a suitable Jakob number that rep-
resents the ratio of the heat conducted through the

liquid to the latent heat released during condensation,
that is

Ja � ClcDT
ncrchfg

: �2�

Here, DT � Ts ÿ T0, Prc is the Prandtl number, Prc �
ncrccc=lc and cc is the speci®c heat capacity. C is a nu-
merical constant adopted to normalize the nondimen-

sional condensate thickness to be shown later, C � 4:
In general, the Jakob number is very small compared
with unity [19] and thus, we can use the boundary

layer approximation for the condensed ¯uid ¯ow in
the limit Ja=g40: The nondimensional velocity or
Reynolds number for the condensed phase,Fig. 1. Physical model sketch.
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Rec � ucL=nc, associated with the condensation pro-
cess, is then of the order of Rec � O�Ja g�1=2: Then, the
condensed ¯uid velocity must be of order

uc0
��������������������
gLJaDTc

DT

r
: �3�

On the other hand, from the physical model we have
the same order of magnitude for the heat ¯ux from the

saturated vapor up to the ®n base and this relationship
is given by

lcL
DTc

dcf

0lwh
DTwL

L
, �4�

where lw represents the thermal conductivity of the ®n
and DTwL is the characteristic longitudinal temperature

di�erence along the ®n. Also, the total temperature
drop, DT, from the condensed ¯uid to the base of the
®n is related to each part of the system as

DTc

DT
� DTwL

DT
01: �5�

Finally, the heat ¯ux balance at the vertical side of the
®n is given by

lc

DTc

dcf

0lw

DTw

h
, �6�

where DTw is the characteristic transverse temperature

di�erence across the ®n. Using the relationships (4)±(6)
together with (1) for dcf , we obtain that the tempera-
ture drop at the condensed ¯uid, DTc, is related to the

total temperature drop, DT, as

DTc

DT
0a4=3

�
DTwL

DT

�4=3

�7�

and equivalently

DTw

DT
0e2

DTwL

DT
: �8�

Combining the order relationships (7) and (5), we
obtain

DTwL

DT
� a4=3

�
DTwL

DT

�4=3

01, �9�

where the parameters a and e are de®ned by

a � lw

lc

h

L

�
Ja

g

�1=4

and e � h

L
: �10�

The parameter a signi®es the relative case of the heat

conducted by the ®n in the longitudinal direction as
compared to the heat conducted through the conden-
sate ®lm. Thus, we can distinguish three relevant limits

depending on the assumed values of a: For a� 1, the
heat conducted through the condensate ®lm has most

of the thermal resistance and longitudinal heat ¯ow
through the ®n has negligible resistance. Thus, no tem-
perature gradients of importance arise in the longitudi-

nal direction. On the other hand, for a < 1, resistance
to heat ¯ow through condensate ®lm is much smaller
than heat conduction in the ®n in the longitudinal

direction, producing large longitudinal temperature
gradients on the plate. We assume that the aspect ratio
of the plate, e � h=L, always is very small compared

with unity. Therefore, from the order relationships
(7)±(9), we obtain

DTwL

DT
01

a
,

DTw

DT
0e2

a
,

DTc

DT
01, for a� 1, �11�

DTwL

DT
01,

DTw

DT
0e2,

DTc

DT
01, for a01 �12�

and

DTwL

DT
01,

DTw

DT
0e2,

DTc

DT
0a4=3, for a� 1, �13�

which clearly con®rm the foregoing comments.

3. Governing equations

Introducing the following nondimensional variables

Solid

yw�w, z� �
Ts ÿ Tw�x, y�

Ts ÿ T0
; w � x

L
, z � y� h

h
, �14�

Condensed ¯ow

yc�w, Zc � �
Ts ÿ Tc�x, y�

Ts ÿ T0
,

D�w� � dc�x�
L�Ja=g�1=4 , Zc �

y

dc�x� ,
�15�

the heat conduction equation for the ®n can be written
as

@ 2yw

@w2
� 1

e2
@ 2yw

@z2
� 0: �16�

Herein, the variables with the subscript c denote the
variables of the condensed phase, those with w denote
the variables of the ®n. We supposed for simplicity
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that the top of the ®n was adiabatic. Thus, the corre-
sponding boundary conditions in the longitudinal

direction at the tip �w � 0� and the base �w � 1� are
given by

@yw

@w

����
w�0
� 0 and yw�1, z� � 1 �17�

and for the transversal direction

@yw

@z

����
z�0
� 0 and

@yw

@z

����
z�1
� e2

a
1

D
@yc

@Zc

����
Zc�0

: �18�

Introducing the nondimensional stream function fc
de®ned by

u � �u�����������
gLJa
p � D2 @ fc

@Zc

;

v � �vg1=4

Ja3=4
������
gL
p � ÿ@

ÿ
D3fc

�
@w

� D2Zc

dD
dw

@ fc
@Zc

,

�19�

where �u and �v represent the longitudinal and transver-

sal velocity components in physical units, respectively,
the momentum and energy equations for the con-
densed liquid, using the boundary layer approxi-

mation, take the form

@ 3fc
@Z3c
� 1 � JaD4

(
@ fc
@Zc

@ 2fc
@w@Zc

ÿ @ fc
@w

@ fc
@Zc

� 1

D
dD
dw

"
2

�
@ fc
@Zc

�2

ÿ3fc @
2fc
@Z2c

#)
�20�

@ 2yc

@Z2c
� Ja PrcD

4

�
@ fc
@Zc

@yc

@w
ÿ @ fc
@w
@yc

@Zc

ÿ 3

D
dD
dw

fc
@yc

@Zc

�
: �21�

The boundary conditions associated with the con-
densed ¯uid governing equations are

yc�w, 0� ÿ yw�w� � fc�w, 0� � @ fc
@Zc

� 0 at Zc � 0 �22�

yc�w, 1� � @ 2fc
@Z2c
� 0 at Zc � 1: �23�

The second condition of Eq. (23) arises from the bal-
ance of tangential shear stresses at the interface [7].
The normalized nondimensional thickness of the con-

densed ®lm, D, is unknown and must be obtained from
the analysis. The energy balance at the condensate±
vapor interface gives the evolution of D as

4D
d
�
D3fc�w, 1�

�
dw

� ÿ@yc

@Zc

����
Zc�1

, �24�

with the initial condition D�w � 0� � 0: The solution of
the problem (16)±(24), should provide

yw � yw�w, z : a, e, Prc, Ja�:
In the remainder of this paper, we classify the sol-
utions according to the assumed values of a, taking ad-

vantage of the fact that, in general, Ja and e2 are very
small compared with unity. Under small Ja and e, the
right-hand side of Eqs. (20) and (21) can be dropped,

and the solution of the governing equations for the
condensate liquid (20)±(24) yield

yc � y�w, 1� and fc�Zc � �
1

2
Z2c

�
1ÿ Zc

3

�
: �25�

A suitable nondimensional heat ¯ux q 00 at the wall is

given by the appropriate or reduced Nussett number
for this problem N�c

N �c �
q 00L

lc�Ts ÿ T0 �
�
Ja

g

�1=4

� ÿ 1

D
@yc

@Zc

����
Zc�0

� yw�w, 1�
D

: �26�

Thus, the nondimensional energy balance equation
(24) at the interface vapor±condensed ¯uid transforms

to

dD4

dw
� yw�w, 1�: �27�

4. Thermally thin wall regime

The thermally thin wall regime corresponds to the
case when a=e2 � 1: In this regime the temperature
variations in the transverse direction in the plate are

very small compared with the global temperature
di�erence as predicted by the second relationships in
Eqs. (11) and (12). Therefore, in this regime the tem-

perature of the plate is assumed to depend only in the
longitudinal coordinate. The heat conduction equation
for the ®n can be integrated along the transverse coor-

dinate and after applying the boundary conditions (18)
together with the nondimensional condensed ¯uid tem-
perature pro®le given by Eq. (25), we obtain

a
d2yw

dw2
� yw

D
: �28�

In the following subsections, we study the limiting
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cases of a� 1 and a� 1, for the thermally thin wall
regime.

4.1. Analysis for the limit a� 1

The system of equations (27) and (28) and the corre-
sponding boundary conditions (17), can be solved
through a regular perturbation technique, using the
inverse of a as the small parameter of expansion. For

very large values of the parameter a, the nondimen-
sional temperature of the plate, yw, changes very little
(of order of aÿ1� in the longitudinal direction as shown

in relationship (11). In order to obtain a solution in
this limit, we assume that the nondimensional tempera-
ture of the plate as well as the nondimensional con-

densed layer thickness can be expanded in the form

yw�w� � y0�w� �
X1
j�1

aÿjyj�w�, �29�

D�w� � D0�w� �
X1
j�1

aÿjDj�w�: �30�

Introducing these relationships into Eqs. (27) and (28),
we obtain after collecting terms of the same power of
a, the following sets of equations

d2y0
dw2
� 0,

dD4
0

dw
� y0, for a0 �31�

d2y1
dw2
� y0

D0
,

4d
�
D3
0D1

�
dw

� y1, for aÿ1 �32�

d2y2
dw2
� y0

D0

�
y1
y0
ÿ D1

D0

�
,

d
�
4D3

0D2 � 6D2
0D

2
1

�
dw

� y2, for aÿ2

�33�

etc., with the following initial and boundary conditions

Di�0� � y0�1� ÿ 1 � dyi
dw

����
w�0
� 0, for all i �34�

and

yi�1� � 0, for all i > 0: �35�
Integration of Eq. (31) with the corresponding initial
and boundary conditions (34) gives y0 � 1 and D0 �
w1=4: Introducing the solutions for y0 and D0 into Eq.
(32) and integrating twice for the energy equation and
once for the condensed layer thickness equation, D1,

we obtain after applying the appropriate initial and
boundary conditions

y1 � 16

21

ÿ
w7=4 ÿ 1

�
, D1 � 4

21

�
4

11
w2 ÿ w1=4

�
�36�

and in a similar way for the second-order terms

y2 � 128

1617
w7=2 ÿ 64

147
w7=4 � 192

539
,

D2 � 8

231
w1=4 ÿ 64

22,869
w15=4:

Therefore, up to the second order, the condensed layer

thickness is given by

D � w1=4
"
1ÿ 4

21a

�
1ÿ 4

11
w7=4

�

� 8

231a2

�
1ÿ 8

99
w7=2

�#
�O�aÿ3 �,

�37�

and the nondimensional plate temperature is

yw � 1ÿ 16

21a

ÿ
1ÿ w7=4

�
� 192

539a2

�
1ÿ 11

9
w7=4

� 2

9
w7=2

�
�O�aÿ3 �: �38�

The leading term on the right-hand side of the above
equations reduces to the classical Nusselt solution [1]
for an isothermal plate.

In order to complete this subsection, we present the
method used for the numerical integration of the gov-
erning equations. We transform the boundary value

problem to an initial value problem by introducing the
following nondimensional variables

z � w
a4=7

, f � D4

a4=7
: �39�

The equations transform to the parameter-free form

d2yw

dz2
� yw

f1=4
and

df
dz
� yw, �40�

with the de®nition yw�0� � yl, the initial conditions are

dyw

dz
� yw ÿ yl � f � 0 at z � 0, �41�

for any initial value of yl < 1: The calculations are per-
formed until yw�zf � � 1 is reached. The value of zf �yl�
dictates the appropriate value of a as a � 1=z7=4f : The
asymptotic solution for values of z40, needed to start
the numerical integration, takes the form
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yw0yl � 16

21
y3=4l z7=4 � � � � , f0ylz for z40: �42�

As the value of a decreases, yl also decreases, reaching

the value of yl � 0 for a critical value of a, a�, to be
obtained as follows. For this critical value of a, one
can verify that the equations have the following closed
form solutions

yw � 8

424
z7 and f � 1

424
z8, for a � a�: �43�

Here zf � 424=7=81=7 and thus, a� � 1=z7=4f � 81=4=42 �
0:040 . . . : Therefore, the nondimensional thickness of
the condensed layer at the base of the ®n gives

D�f �
�
42a�

82

�1=7

� 1

87=28
�: 0:5946: �44�

4.2. Analysis for the limit a < a�

For smaller values of a, a < a�, a boundary layer
develops close to the base of the ®n. In order to study

the condensation process for very small values of a, we
introduce the following stretched variables

x � 1ÿ w
a4=7

, f � D4

a4=7
, �45�

transforming the governing equations to

d2yw

dx2
� yw

f1=4
and

df
dx
� ÿyw, �46�

with the boundary conditions

yw � 1 at x � 0 �47�

yw40 and f40 for x41: �48�
Eq. (46) can be written in the phase-space variables as

f1=4

"
yw

d2yw

df2
�
�

dyw

df

�2
#
� 1, �49�

with the initial condition yw�0� � 0, which also guaran-
tees the adiabatic condition. The solution can be
obtained in closed form as yw � 8f7=8=

�����
42
p

, or using

the second part of Eq. (46), we also obtain

f �
�
f1=8

f ÿ
1�����
42
p x

�8
and

yw � 8�����
42
p

�
f1=8

f ÿ
1�����
42
p x

�7
:

�50�

Here ff is the nondimensional value at the base of the

®n and is given by ff � �
�����
42
p

=8�8=7�: 0:78608: The non-
dimensional thickness of the condensed layer is then

Df � a1=7f1=4
f , for values of aRa�: For this case, the

condensation layer begins at a very well de®ned pos-
ition of the ®n, xwet �

�����
42
p

f1=8
f �: 6:2887: At x > xwet

�wwet � 1ÿ xweta4=7� there is no condensed ¯uid at all.
The portion of the ®n in contact with condensed ¯uid
decreases as the value of a decreases. The ®n wets

completely for values of ara�:

5. Thermally thick wall regime

For values of a of the order of e7=4, the variations in
the temperature in the transverse direction of the plate
are now important and must be retained. Introducing

the same inner variables given by (45), we obtain the
following transformed governing equations

b
@ 2yw

@x2
� @

2yw

@z2
� 0 �51�

df
dx
� ÿyw �52�

where b � e2=a8=7: The boundary and initial conditions
are then given by

@yw

@z

����
z�1
� ÿb yw

f1=4
,
@yw

@z

����
z�0
� 0 �53�

yw�x � 0, z� ÿ 1 � @yw

@x

����
x41
� 0: �54�

With the asymptotic limit of b40, we recover the sol-

ution obtained in the previous subsection. The system
of equations (51)±(54), were integrated numerically
using a central ®nite-di�erence scheme for the Laplace

Fig. 2. Nondimensional temperature, yw (Q) and thickness of

the condensed ®lm, D (R) as a function of the nondimen-

sional longitudinal coordinate w, for di�erent values of the

parameter a in the thermally thin wall regime.
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equation and a conventional Simpson rule for Eq.
(52). The iteration procedure is to assume a known in-
itial distribution for the temperature yw, using a
pseudo-temporal version of the Laplace equation. The

steady-state solution is reached when a convergence
criterion is ful®lled.

6. Results and conclusions

The analytical and numerical results are presented in

this section through Figs. 2±7. Fig. 2 shows the nu-
merical solution for the nondimensional temperature
and condensed ®lm thickness for di�erent values of a
in the thermally thin wall regime. For large values of
a, the solution tends to the well-known Nusselt sol-
ution, with yw01 and D0w1=4: As the value of a
decreases, the temperature variations along the longi-

tudinal coordinate are larger and the condensed mass
¯ow decreases. There is a critical value of
a, a� � 0:0400 . . ., which makes the temperature at the

top of the ®n to be exactly the same as the temperature
of the saturated vapor, yw�w � 0� � 0: The correspond-
ing limiting analytical pro®les for values of aRa� and

b � 0 are plotted in Fig. 3. For values of aRa� and
®nite values of b, the nondimensional condensed layer
®lm thickness D as a function of x is plotted in Fig. 4.

The numerical results show that for even values of b
of order unity, there is an important mass ¯ow rate of
condensed ¯uid. The portion of the ®n in contact with
the condensed ¯uid decreases with increasing values of

b: In physical units, the mass ¯ow rate of condensed
¯uid at the bottom of the ®n is then given by

m 0 � rcn1=2c

3

"
4g1=3Llc�Ts ÿ T0 �

hfgmc

#3=4

D3
f �a, b� �55�

where the numerical solution for Df is plotted in Figs.
5 and 6, for the thermally thin and thick wall approxi-

mations, respectively. In Fig. 5, the two-term asympto-

Fig. 3. Nondimensional temperature, yw (q) and modi®ed

thickness of the condensed ®lm, f (w) as a function of the

nondimensional inner coordinate x, for a < a� in the ther-

mally thin wall regime �b � 0).

Fig. 4. Nondimensional reduced thickness of the condensed

®lm, D=a1=7 as a function of the nondimensional inner coordi-

nate x, for di�erent values of b in the thermally thick wall

regime.

Fig. 5. Nondimensional thickness of the condensed ®lm at the

base of the ®n, Df as a function of a: The asymptotic sol-

utions for a� 1 (q) and a < a� (w) are also plotted.

Fig. 6. Nondimensional reduced thickness of the condensed

®lm at the base of the ®n, Df=a1=7 as a function of b in the

thermally thick wall regime.
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tic solutions for a� 1 and the closed form solution

for aRa� are also included. The solution for a� 1,
gives acceptable results for values of a02, while the
other approximation o�ers good results for values of

a00:3: Fig. 6 shows Df=a1=7 as a function of parameter
b, for values of aRa�: The e�ect of the ®nite aspect
ratio of the ®n, included in the de®nition of b, for a

given value of a, is to reduce the value of Df : If we de-
®ne the ®n e�ciency as the ratio of the actual conden-
sate mass ¯ow rate to that obtained by using the

isothermal wall �a41), then

Z � m 0

�m 0 �1 � D3
f , �56�

with Df obtained in Figs. 5 and 6 (for the thermally
thin and thick wall regimes, respectively). In Fig. 5, we
can see that the asymptotic solution obtained for the

case of a < a� gives excellent results even for values of
a < 0:3, Df � �0:9416ÿ 0:09b�a1=7: Therefore, the ef-
®ciency can be written as

Z ' �0:9416ÿ 0:09b�3a3=7 for a < 0:3: �57�
As illustration we computed typical nondimensional

values of the important parameters by using a simple
®n made of aluminum with dimensions h � 0:5 cm.
and L � 10 cm. Three di�erent condensed liquids have

been used: R-113, water and NH3. The adopted value

of the temperature di�erence is DT � 20 K. Table 1
summarizes the numerical results obtained for the par-

ameters Ja, g, a, b and Z: The resulting Jakob numbers
for the ®rst two liquids are very low compared with
unity and the results obtained in this work can be

used. However, the results obtained with NH3 are to
be used with caution, because the convective terms in
the governing equations now are important and must

be included in the calculations. The obtained value of
g is always very small compared with unity. The value
of a is of order unity for the ®rst case, while for the

other two liquids it is extremely low, even below a�, in-
dicating that in these cases, there is a portion of the
plate which remains dry. In all three cases, we can
assume that the thermally thin wall regime �b40� rep-
resents a good approximation. Finally, the ®n e�-
ciency has been obtained using Eq. (57), which is an
excellent approximation for values of a < 0:3 and b <
0:2: Using R-113 for this ®n con®guration we obtain
an e�ciency of 35.8%, while the other two cases give
an e�ciency around 15%.

In this paper, we studied the conjugate heat transfer
condensation process of saturated vapor in a vertical
®n with an uniform temperature at the bottom. This

boundary condition modi®es the results obtained in
previous works, where the e�ect of the longitudinal
heat conduction through the ®n has been neglected in
the thermally thick wall regime. In this particular case,

the longitudinal heat conduction must be retained for
any value of the parameter a: Furthermore, there is a
critical value of a, a��: 0:0400 . . ., where the tempera-

ture at the top of the ®n reaches the temperature of
the condensed vapor. For values of a < a�, there is a
portion of the ®n which remains dry. Finally, Fig. 7

shows the nondimensional wetted length, xwet, as a
function of b: The total mass ¯ow rate of condensed
¯uid has been obtained for all values of the involved
parametric space.
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